Abstract

In strongly magnetized neutral plasmas, electron motion is reduced perpendicular to the magnetic field direction. This changes dynamical plasma properties such as temperature equilibration, spatial density evolution, electron pressure, and thermal and electrical conductivity. In this paper we report measurements of free plasma expansion in the presence of a strong magnetic field. We image laser-induced fluorescence from an ultracold neutral Ca^{+} plasma to map the plasma size as a function of time for a range of magnetic field strengths. The asymptotic expansion velocity perpendicular to the magnetic field direction falls rapidly with increasing magnetic field strength. We observe that the initially Gaussian spatial distribution remains Gaussian throughout the expansion in both the parallel and perpendicular directions. We compare these observations with a diffusion model and with a self-similar expansion model and show that neither of these models reproduces the observed behavior over the entire range of magnetic fields used in this study. Modeling the expansion of a magnetized ultracold plasma poses a nontrivial theoretical challenge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call