Abstract

The use of strong, uniform, longitudinal magnetic fields for external electron and photon beam irradiation is considered. Using the EGS4 Monte Carlo code modified to account for the presence of magnetic fields, dramatic narrowing of penumbra for photon and electron irradiations is demonstrated. In the vicinity of heterogeneities, "hot" and "cold" spots due to multiple scattering in electron beams are reduced substantially. However, in the presence of strong magnetic fields, the effect of inhomogeneities can be observed far from the location of the inhomogeneity due to reduced "washout" caused by lateral multiple scattering. The enhanced "Bragg peak," proposed or calculated by other authors, is not observed on the central axis of broad beams, owing to lateral equilibrium. It is proven that for broad parallel beams, the central axis depth-dose curve is independent of the strength of the external longitudinal magnetic field, as long as it is uniform. However, strong longitudinal magnetic fields can induce enhancements by redirection of the electron fields coming from point sources. Strong uniform longitudinal magnetic fields provide a way of controlling the spreading of electron beams due to multiple scattering, making the electron beams more "geometrical" in character, simplifying dose-deposition patterns, possibly allowing electron beams to be used in new ways for radiotherapy. Photon therapy also benefits from strong uniform longitudinal magnetic fields since the penumbra or other lateral disequilibrium effects associated with lateral electron transport can be eliminated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.