Abstract

We design and experimentally demonstrate an ultrathin, ultrabroadband, and highly efficient reflective linear polarization convertor or half-wave retarder operating at terahertz frequencies. The metamaterial-inspired convertor is composed of metallic disks and split-ring resonators placed over a ground plane. The structure exhibits three neighboring resonances, by which the linear polarization of incident waves can be converted to its orthogonal counterpart upon reflection. For an optimal design, a measured polarization conversion ratio for normal incidence is greater than 80% in the range of 0.65–1.45 THz, equivalent to 76% relative bandwidth. The mechanism for polarization conversion is explained via decomposed electric field components that couple with different resonance modes of the structure. The proposed metamaterial design for enhancing efficiency of polarization conversion has potential applications in the area of terahertz spectroscopy, imaging, and communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call