Abstract
A terahertz broadband tunable reflective linear polarization converter based on oval-shape-hollowed graphene metasurface is proposed and verified by simulation and Fabry-Perot multiple interference theory in this paper. Our designed metasurface model is similar to a sandwiched structure, which is consisted of the top layer of anisotropic elliptical perforated graphene structure, an intermediate dielectric layer and a metal ground plane. The simulation results show that when the given graphene relaxation time and Fermi energy are τ=1 ps and μc=0.9 eV, respectively, the polarization conversion rate (PCR) of the designed metasurface structure is over 90% in the frequency range of 0.98 THz~1.34 THz, and the relative bandwidth is 36.7%. In addition, at resonance frequencies of 1.04 THz and 1.29 THz, PCR is up to 99.8% and 97.7%, respectively, indicating that the metasurface we designed can convert incident vertical (horizontal) linearly polarized waves into reflected horizontal (vertical) linearly polarized waves. We used the Fabry-Perot multi-interference theory to further verify the metasurface model. The theoretical predictions are in good agreement with the numerical simulation results. In addition, the designed metasurface reflective linear polarization conversion characteristics can be dynamically adjusted by changing the Fermi energy and electron relaxation time of graphene. Therefore, our designed graphene-based tunable metasurface polarization converter is expected to have potential application value in terahertz communication, sensing and terahertz spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.