Abstract
Implementing 5G technology contributes to improve communication quality and facilitate several interesting applications in daily life such as Internet of things. Despite outstanding features of 5G, the amount of ambient electromagnetic waves will be increased significantly in the environment, which may be undesired. Ultra-wideband metamaterial perfect absorber is a promising solution to collect these undesired signals. Using lumped elements in absorber structure to increase the absorption bandwidth leads to design and fabrication process complexity. In this paper, a low profile polarization angle selective metamaterial absorber has been designed to absorb signals in the frequency range of 21.79 GHz to 53.23 GHz with more than 90% efficiency. The relative absorption bandwidth of the final structure is 83.81%. Moreover, the final structure is reasonably insensitive facing different incident angle up to 40 degree.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have