Abstract

In this work, we present the design of a polarization independent broadband absorber in the terahertz (THz) frequency range using a metasurface resonator. The absorber comprises of three layers, of which, the top layer is made of a vanadium dioxide (VO2) resonator with an electrical conductivity of σ = 200000 S/m; the bottom layer consists of a planar layer made of gold metal, and a dielectric layer is sandwiched between these two layers. The optimized absorber exhibits absorption greater than 90% from 2.54-5.54 THz. Thus, the corresponding bandwidth of the designed absorber is 3 THz. Further, the thermal tunable absorption and reflection spectra have been analyzed by varying the electrical conductivity of VO2. The impact of the various geometrical parameters on the absorption characteristics has also been assessed. The physics of generation of broadband absorption of the proposed device has been explored using field analysis. Finally, the absorption characteristics of the unit cell has been studied for various incident and polarization angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.