Abstract

PurposeThe proposed structure consists of copper as a ground plane and 50 µm polyimide dielectric layer is placed in between the ground panel and top radiating patch. Octagon and pentagon shapes are combined to form a unit cell. This structure exhibits seven absorption peaks within the short frequency range 0.3–0.5 terahertz (THz) without any interference. Under normal incidence, this structure achieves the absorption of 96.9%, 95.3%, 98.7%, 91.7%, 96.5%, 95% and 97.8% at 0.3136 THz, 0.377 THz, 0.4060 THz, 0.4085 THz, 0.4240 THz, 0.4436 THz and 0.4648 THz, respectively. This study aims to provide a range of applications in THz dielectric sensing, thickness sensing, communications, wavelength selective radiation and detecting.Design/methodology/approachMulti-band THz metamaterial absorbers (MMA) from previous research are having a large unit size because of the presence of stacked layers and multiple resonators within a single unit cell. This leads to difficulty while implementing in practical applications. In this study, a new MMA has been presented at seven distinct frequencies without using stacked layers and multiple resonators.FindingsThis structure exhibits seven absorption peaks within the short frequency range 0.3–0.5 THz without any interference. Under normal incidence this structure achieves the absorption of 96.9%, 95.3%, 98.7%, 91.7%, 96.5%, 95% and 97.8% at 0.3136 THz, 0.377 THz, 0.4060 THz, 0.4085 THz, 0.4240 THz, 0.4436 THz and 0.4648 THz, respectively. The polarization and angle insensitivity of the design have been validated by numerical simulation up to 90° of oblique incidence. The effects of variation in geometrical parameters on absorption response are demonstrated. The physical mechanism of the structure is analysed by electric and magnetic field distributions. The resonant frequency ranges and the number of bands in this work are compared with previously reported papers. In THz range, this is the first time a single planar structure provides seven-band high-level absorption performance.Originality/valueThe highlights of the proposed seven-band THz MMA structure, in comparison with previous THz metamaterials, are as follows: this has a simple unit-cell structure and high resonant mechanism within the short frequency range 0.3–0.5 THz; this MMA can provide seven-band high-level absorption performance in a single planar structure for the first time in THz range; and this structure is polarization and incident angle independent in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.