Abstract
From the technical and design points of view, it is quite difficult to maintain the integrity of nano-films during the deposition process to fabricate practical devices based on ultra-thin semiconductor films. Thus, defect-free wafer-scaled development of ultra-thin quasi two-dimensional (2D) oxide semiconductor films represents serious challenges. Plasma-enhanced atomic layer deposition (PE-ALD) made it possible to fabricate ultra-thin MoO3 nano-films (4.6nm) over the wafer-scaled granular Au electrode. The detailed ALD recipe for ultra-thin MoO3 film was established and verified. The C12H30N4Mo and O2 plasma were used as Mo precursor and oxygen source, respectively. The growth of crystalline phases was observed when the ALD temperature of 250°C was employed. Higher ALD temperature resulted in an increase of growth rate over Au substrate (1.21Ǻ/cycle). The precise recipe design enabled the scalable fabrication of environmental sensors based on ultra-thin MoO3 films with precise thickness controllability. Electrochemical sensors based on the fabricated MoO3 nanostructures demonstrated reliable performance to hydrazine (N2H4) detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.