Abstract

Conventional randomly-oriented Tow Based Discontinuous Composites (TBDCs) are materials which combine good mechanical properties, lightweight and high manufacturability, and are therefore interesting for high-volume transport industries. This paper proposes, designs and successfully demonstrates a pathway to produce TBDCs with outstanding stiffness and tensile strength, by using ultra-thin tapes of (ultra-) high modulus carbon-fibres. Numerical models are used to explore the design space of discontinuous composite materials, in order to identify the optimal microstructural design to maximise stiffness and strength. Selected microstructures are manufactured and tested under tension; the experimental results show good agreement with the numerical predictions, and demonstrate a significant increase in the tensile strength and Young’s modulus of TBDCs by reducing the tow thickness and increasing the modulus of the fibres. Strength and stiffness increases of over 100% compared with the commercially available TBDC systems are achieved, resulting in mechanical properties that match the strength and overcome the stiffness of aerospace-graded continuous-fibre laminates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call