Abstract

Patterning of numerous microlenses on a surface improves the optical performance of components such as liquid crystal displays. A cutting method using a diamond tool is examined to fabricate a molding die that employs arbitrary array patterns to mold millions of microlenses. The present paper investigates machining of microlenses on the order of 2 kHz, using a piezo-actuated micro cutting unit and a synchronous control system of the cutting unit with an NC controller. Experiments using this system revealed that it is possible to machine a large number of microlenses on a molding die with high precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.