Abstract

We report on an experimental demonstration of graphene-metal ohmic contacts with contact resistance below 100 Ω µm. These have been fabricated on graphene wafers, both with and without hydrogen intercalation, and measured using the transmission line method. Specific contact resistivities of 3 × 10−7 to 1.2 × 10−8 Ω cm2 have been obtained. The ultra-low contact resistance yielded short-channel (source-drain distance of 0.45 µm) HfO2/graphene field effect transistors (FETs) with a low on-resistance (Ron) of 550 Ω µm and a high current density of 1.7 A/mm at a source-drain voltage of 1 V. These values represent state-of-the-art (SOA) performance in graphene-metal contacts and graphene FETs. This ohmic contact resistance is comparable to that of SOA high-speed III–V high electron mobility transistors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.