Abstract
A monolithic inkjet print head, fabricated with silicon micromachining technology and capable of generating microscale liquid droplets, is developed and shown to function successfully. The print head uses a dense array of thermal bubble inkjet devices, made on a single silicon wafer. Each device is made of a Pt heater stack, a small, shallow fluid chamber, and a refilling channel formed by a Ge-sacrificial etching process, a deep-etched through-wafer feeding hole, and a micron-scale nozzle opened in a thin nitride membrane by plasma etching. Experimental results with a high resolution video imaging system show that this print head is capable of generating water droplets as small as 3 µm in diameter (0.014 pL), about 1/70th the volume of the droplets produced by existing inkjet systems. The printing process is also found to be stable, uniform in droplet size and velocity, and free of satellite droplets at optimum operation conditions. At small distances between the print head and substrate, droplet spreading is also small. This print head is then a capable tool for ultra-high-resolution inkjet printing and can be used in research areas where delivery of micron-scale fluid droplets is desired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.