Abstract

A BaTiO3/SrCoO2.5 (BTO/SCO) bilayer and a BTO single film were prepared by radio frequency magnetron sputtering on La0.7Sr0.3MnO3 (LSMO) buffered SrTiO3 (001) substrates. Interestingly, compared with reported BTO-based films, the BTO/SCO/LSMO heterostructure has a maximum ON/OFF current ratio of ∼945. More interestingly, compared with the BTO single layer, a larger Pr (∼18.4 μC cm-2) and larger dielectric tunability (∼71.9%) were achieved in the BTO/SCO bilayer. The improved performance may be attributed to the large tetragonality and improved oxygen vacancy concentrations in the BTO/SCO/LSMO heterostructure. Furthermore, our BTO/SCO/LSMO stacks exhibit potential for flexible electronic informational devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call