Abstract
Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size-dependent activity in nanoparticles and thickness-dependent activity of thin films imply that the sub-surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub-surface layers was investigated by employing atomic-scale thickness control of the La0.7 Sr0.3 MnO3 (LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non-monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3 heterostructures. The observation leads to the definition of an "electrochemically-relevant depth" on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core-shell architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.