Abstract

Histones are subjected to extensive post-translational modifications (PTMs) that are known to play key roles in many biological processes. In this study, we report a fast, efficient, highly reproducible, and easily automated method involving ultra-high performance liquid chromatography (UHPLC) coupled to a high resolution/high mass accuracy LTQ-Orbitrap mass spectrometer to profile core histone modifications/variants from WI-38 primary human fibroblasts. The whole analysis was performed on intact unfractionated histones within 19 min, which is ∼3-fold faster than previously published procedures. High mass accuracy measurements combined with top-down tandem mass spectrometry (MS) experiments enable accurate histone identification. Experimental and biological variations were thoroughly assessed and were 8% and 16% on average, respectively. With a sample preparation reduced to the minimum, characterization of the most abundant histones can be achieved in a single experiment. Semi-quantitative information can be obtained with respect to the relative abundances of the detected isoforms through a label-free approach. Isoform identities and relative distributions were further confirmed by the LC-MS/MS analysis of tryptic digests. Overall, our UHPLC-MS approach for histone profiling offers a sensitive and reproducible tool that will be of great value for exploring PTMs and variants and can readily be applied to clinical or pharmaceutical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call