Abstract

Nowadays, functional electronic devices with excellent flexibility and thermal management capability for effective electromagnetic wave absorption are urgently in demand. Herein, a novel and highly flexible silver nanowire (AgNW)/iron nanowire (FeNW) decorated melamine composite foam (AgFe-MF) was prepared via simple dip-coating process. Owing to optimal impedance matching, synergistic dielectric and magnetic losses as well as three-dimensional porous structure, the AgFe-MF with an ultra-low filler content (0.22 vol%) exhibited an outstanding minimum reflection loss of −69.61 dB, and the best effective absorption bandwidth (EAB) could reach up to 6.37 GHz. Importantly, the EAB of long-time working AgFe-MF was enhanced to 7.01 GHz after 1000 compress-release cycles under 40 % strain. Besides, it also featured considerate Joule heating capacity and achieved a saturation temperature of over 85.7 ℃ under 2.6 V voltage. The impressive thermal isolation and long-term stability ensured the safety used as portable heater. Therefore, this work will provide a vital slight for fabricating smart wearable electronic devices with integrated anti-electromagnetic radiation and personalized thermal management performances towards potential thermal and health threats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call