Abstract

In this study, we explored the possibility of ultra-fast electrochemical boriding of nickel aluminide (Ni 3Al) in a molten borax electrolyte. Electrochemical boriding was performed at 950 °C for 15 min and at current densities ranging from 0.1 to 0.5 A/cm 2. The boride layers formed on the test samples were 50 to 260 μm thick depending on the current density. The mechanical, structural, and chemical characterization of the boride layers was carried out using a Vickers micro-hardness test machine, optical and scanning electron microscopes, and a thin film X-ray diffractometer. The hardness of boride layer was in the range from 800 to 1200 ± 50 HV depending on the load and the region from which the hardness measurements were taken. X-ray diffraction studies confirmed that the boride layers were primarily composed of Ni 3B, Ni 4B 3 and Ni 20AlB 14 phases. Structurally, the boride layer was very homogenous and uniformly thick across the borided surface area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.