Abstract

Boronizing/boriding is a thermo mechanical process which produced protective surface layers to enhance the performance of engineering components utilized in mechanical, wear and corrosion. The present study investigate the microstructure and the hardness of boride layers formed on 0.28% Vanadium and 0.87% Nickel alloyed ductile iron after boronizing process. Specimens were boronized at 950° C for 6, 8 and 10 hours holding time before being cooled in the furnace. The microstructure and boride layer formed on the surface of substrates were observed under Olympus BX60 Optical Microscope. Vickers Micro Hardness Tester was also performed to determine the hardness of boride layers. Boride layer was formed by diffusion of the boron into the metal lattice at the surface which composed double phase of FeB and Fe2B with saw-tooth morphology. The results of this study indicated that the thickness of boride layers increased from 109.8μm at 6 hours to 195.4μm at 8 hours holding time before they crack at 10 hours. The hardness of the material surface also increased from 1535 HV to 1623 HV at 6 and 8 hours respectively. In conclusion, the microstructure, borides thickness and hardness of borides layer were depending on boronizing time while temperature kept constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call