Abstract

In this paper, we report design and numerical analysis of a Ge11.5As24Se64.5 based chalcogenide glass graded-index photonic crystal fiber structure for mid-IR ultra broadband supercontinuum generation. The proposed dispersion engineered photonic crystal fiber offers a zero dispersion wavelength at a pump wavelength of 2.8 μm. To simulate the supercontinuum generation spectrum, the orders of dispersion coefficient up to the ninth order are considered. Simulated results indicate that an ultra broadband supercontinuum spectrum spanning 1-16 μm has been achieved using a 10 mm long photonic crystal fiber structure pumped with 50 fs secant hyperbolic pulses of 3 kW at a -30 dB spectral intensity level. To the best of our knowledge, this is the first time such broad supercontinuum spectrum has been reported. This ultra broadband mid-IR supercontinuum spectrum is applicable in many diverse fields, including medical, defense, metrology, and spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.