Abstract
The rapid growth of new electromechanical applications has increased the demand for ferroelectric ceramics with excellent piezoelectric properties and a wide temperature operating range. However, achieving robust piezoelectricity and temperature stability simultaneously in lead zirconate titanate (Pb(Zr, Ti)O3) based piezoelectric ceramics poses a significant challenge. This study proposes a new material system of 0.98Pb0.84Ba0.16(Zr2/3Ti1/3)O3–0.02Pb(Sb1/2Nb1/2)O3 + x wt.%Sm2O3 (PBZT-PSN-xSm) to address this challenge. Remarkably, the ceramics x = 0.4 demonstrate excellent piezoelectric properties (including piezoelectric coefficient d33 of 610 pC/N and Curie temperature TC of 290 °C) and favorable temperature stability (i.e., d33 varies less than 10 % within 25–200 °C). The high piezoelectric properties arise from the optimized phase fraction between rhombohedral (R) and tetragonal (T) phases and the increased grain size, which enhance the lattice distortion and the domain switching under electric fields, respectively. The superior temperature stability can be attributed to stable crystal structure and domain structure. These findings indicate that PBZT-PSN-xSm ceramics hold great promise for practical utilization in high-temperature transducers and sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.