Abstract

Although fine equiaxed structure benefits both strength and ductility in titanium alloys, it is often considered incompatible with high toughness, for its insufficient ability to deflect propagating cracks compared to coarse lamellar structure. This work reports an excellent combination of standard Charpy impact toughness (∼100 J) and yield strength (∼820 MPa) in a powder metallurgy titanium alloy with fine equiaxed structure (∼1.5 μm), wherein the β matrix exists as equiaxed nodules and fine ligaments for globularization of α grains. The impact curve divided with the “compliance changing rate” (CCR) method indicates that the energy consumed by crack propagation is dominant (∼82%) during the impact process. Fractographic and structural examinations indicate that multiple micro-voids nucleation near boundaries between fine β ligaments and α grains mitigates local stress concentration, and that coordinated deformation between equiaxed β nodules and α grains hinders crack propagation, which together enable the excellent combination of yield strength and impact toughness. Our work provides a new pathway for designing impact-resistant titanium alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.