Abstract

Optical properties of a metasurface which can be considered a monolayer of uniaxial metamaterials ‐ parallel‐plate and nanorod arrays – are investigated. It is shown that such metasurface acts as an ultimately thin sub‐100 nm wave plate. This is achieved via an interplay of epsilon‐near‐zero and epsilon‐near‐pole behavior along different axes in the plane of the metasurface allowing for extremely rapid phase difference accumulation in very thin metasurface layers. These effects are shown to not be disrupted by non‐locality and can be applied to the design of ultrathin wave plates, Pancharatnam‐Berry phase optical elements and plasmon‐carrying optical torque wrench devices. image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.