Abstract

This paper presents the ultimate strength and ductility of steel tubular bridge piers with the inner cruciform plates, the stiffener plates, the concrete-filled sections and the outer tube subjected to monotonic and cyclic horizontal loads. Numerical analyses were carried out using the finite element package MARC. Firstly, to check the validity of the numerical analysis, the analytical results of the steel tubular columns with the inner cruciform plates, the concrete filled sections and the outer tube were compared with the previous experimental results. Secondly, the effects of the radius-to-thickness ratio parameter and the slenderness ratio parameter on seismic performance (the ductility, the ultimate strength etc.) of these steel tubular piers were examined. Numerical results indicated that the steel column with inner cruciform plates was able to improve the ultimate strength and ductility of the steel tubular piers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.