Abstract
In this work, a highly efficient multifunctional non-enzymatic electrochemical sensor is successfully fabricated based on a facile two-step synthetic strategy. It resolves two important challenges of poor stability and low reproducibility compared to conventional electrochemical enzyme-based sensors. Herein, a metal-organic framework (UiO-66) is selected as a sacrificial template to construct the corresponding Prussian blue analogue (PBA) target to improve its stability and conductivity, namely, PBA/UiO-66/NF. Target PBA/UiO-66/NF exhibits excellent electrochemical sensing performance as hydrogen peroxide (H2O2) and glucose sensors with ultrahigh sensitivity of up to 1903 μA mM-1 cm-2 for H2O2 and 22,800 μA mM-1 cm-2 for glucose, as well as a very low detection limit of 0.02 μM (S/N = 3) for H2O2 and 0.28 μM for glucose. Especially, extremely high stability can be observed, which will be beneficial for practical application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have