Abstract
PurposeExisting Simultaneous Localization and Mapping (SLAM) algorithms have been relatively well developed. However, when in complex dynamic environments, the movement of the dynamic points on the dynamic objects in the image in the mapping can have an impact on the observation of the system, and thus there will be biases and errors in the position estimation and the creation of map points. The aim of this paper is to achieve more accurate accuracy in SLAM algorithms compared to traditional methods through semantic approaches.Design/methodology/approachIn this paper, the semantic segmentation of dynamic objects is realized based on U-Net semantic segmentation network, followed by motion consistency detection through motion detection method to determine whether the segmented objects are moving in the current scene or not, and combined with the motion compensation method to eliminate dynamic points and compensate for the current local image, so as to make the system robust.FindingsExperiments comparing the effect of detecting dynamic points and removing outliers are conducted on a dynamic data set of Technische Universität München, and the results show that the absolute trajectory accuracy of this paper's method is significantly improved compared with ORB-SLAM3 and DS-SLAM.Originality/valueIn this paper, in the semantic segmentation network part, the segmentation mask is combined with the method of dynamic point detection, elimination and compensation, which reduces the influence of dynamic objects, thus effectively improving the accuracy of localization in dynamic environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have