Abstract

Addition of UDP-glucuronic acid to microsomal incubations containing benzo(a)pyrene caused a dose-dependent conjugation of principally quinone and phenol metabolites. Total benzo(a)pyrene oxidation was also stimulated with a maximum increase at 2 nM UDPGA. In the presence of calf thymus DNA, UDPGA caused a 2.7-fold increase in benzo(a)pyrene diol-oxide modification of DNA, as analyzed by Sephadex LH-20 chromatography. Maximum DNA modification by diol-oxides occurred at a UDPGA concentration which gave the highest level of free benzo(a)pyrene 7,8-dihydrodiol; likewise, the amount of DNA adduct derived from benzo(a)pyrene phenols declined in parallel with levels of free phenol metabolites. The UDPGA-induced increase in benzo(a)pyrene oxidation and concomitant increase in diol-oxide modification of DNA is consistent with removal of product inhibition by glucuronide conjugation of an inhibitory benzo(a)pyrene metabolite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.