Abstract

To address the issues of high porosity and low strength in calcium sand of artificial islands, this study focuses on improving the calcium sand’s mechanical properties. The effects of WER curing methods and coconut fiber modification on the UCS and microscopic mechanisms of calcium sand are investigated. The results indicate that both fiber incorporation and the increase in WER ratio can enhance the unconfined compressive strength of calcareous sand, with the addition of a certain amount of coconut coir fiber showing a more significant strength increase. The optimal recommended dosage of WER is 15%, which results in an UCS of 1218 kPa, an increase of nearly 4.27 times compared to 9% WER dosage. Coconut coir fiber has good tensile strength that can improve the compressive strength of calcareous sand after curing. The UCS of calcareous sand cured with a fiber content of 0.3% to 0.5% is increased by 1247 kPa to 1792 kPa compared to cured soil with no fiber. The strong binding nature of WER addresses the issue of large porosity in calcareous sand. Together with the penetrating coconut coir fibers, it forms a three-dimensional reticular framework structure, thereby enhancing the compressive performance of the calcareous sand-cured soil mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call