Abstract
BackgroundUBTF is an HMGB-box DNA binding protein and a necessary Pol I/Pol II basal transcription factor. It has been found that UBTF involves in carcinogenesis and progression of a few cancers. Nevertheless, the the biological function and potential molecular mechanism of UBTF in melanoma are still not clear and need to be clarified.MethodsUBTF and GIT1 expressions in melanoma specimens and cell lines were examined by quantitative real-time PCR (qRT-PCR) and Western blot. MTT and colony formation assays were used to investigate the effects of UBTF and GIT1 on melanoma cell proliferation. Cell cycle and apoptosis assays were detected by flow cytometry. Tumor formation assay was used to analyze the effect of UBTF on melanoma growth. Bioinformatics predicting, chromatin immunoprecipitation (ChIP)-qRT-PCR and reporter gene assay were fulfilled for verifing GIT1 as UBTF targeting gene.ResultsHere we reported that UBTF mRNA and protein expressions were upregulated in primary melanoma specimens and cell lines. UBTF overexpression facilitated melanoma cell proliferation and cell cycle progression and restrained. Silencing UBTF suppressed cell multiplication, cell cycle progression and tumor growth, and promoted apoptosis. UBTF expression was positively related with GIT1 expression in human melanoma tissues. It was verified that UBTF promoted GIT1 transcription in melanoma cells through binding to the promoter region of GIT1. Furthermore, GIT1 overexpression promoted melanoma cell growth and suppressed apoptosis. Knockdown of GIT1 inhibited cell multiplication and induced apoptosis. Overexpression of GIT1 eliminated the effects of silencing UBTF on melanoma cells. Importantly, UBTF activated MEK1/2-ERK1/2 signalling pathways by upregulating GIT1 expression.ConclusionsOur study demonstrates that UBTF promotes melanoma cell proliferation and cell cycle progression by promoting GIT1 transcription, thereby activating MEK1/2-ERK1/2 signalling pathways. The findings indicate that UBTF plays a crucial function in melanoma and may be a potential therapeutic target for the treatment of this disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.