Abstract

BackgroundThere are several common ways to encode a tree as a matrix, such as the adjacency matrix, the Laplacian matrix (that is, the infinitesimal generator of the natural random walk), and the matrix of pairwise distances between leaves. Such representations involve a specific labeling of the vertices or at least the leaves, and so it is natural to attempt to identify trees by some feature of the associated matrices that is invariant under relabeling. An obvious candidate is the spectrum of eigenvalues (or, equivalently, the characteristic polynomial).ResultsWe show for any of these choices of matrix that the fraction of binary trees with a unique spectrum goes to zero as the number of leaves goes to infinity. We investigate the rate of convergence of the above fraction to zero using numerical methods. For the adjacency and Laplacian matrices, we show that the a priori more informative immanantal polynomials have no greater power to distinguish between trees.ConclusionOur results show that a generic large binary tree is highly unlikely to be identified uniquely by common spectral invariants.

Highlights

  • There are several common ways to encode a tree as a matrix, such as the adjacency matrix, the Laplacian matrix, and the matrix of pairwise distances between leaves

  • Tree shape theory furnishes numerical statistics about the structure of a tree [1,2]. (Because we are interested in applications of tree statistics to trees that describe the structure of branching events in evolutionary histories, we will, for convenience, always take the term tree without any qualifiers to mean a rooted, binary tree without any branch length information or labeling of the vertices.) Such statistics have two related uses

  • Spectral invariants of matrix formulations of trees are a natural way to quantify the shape of phylogenetic trees

Read more

Summary

Results

We show for any of these choices of matrix that the fraction of binary trees with a unique spectrum goes to zero as the number of leaves goes to infinity. We investigate the rate of convergence of the above fraction to zero using numerical methods. For the adjacency and Laplacian matrices, we show that the a priori more informative immanantal polynomials have no greater power to distinguish between trees

Background
C11 C12 C21 C22
Conclusions
Felsenstein J
Chung FRK
11. Matoušek J: Lectures in Discrete Geometry New York

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.