Abstract
For myotube formation, proliferation and differentiation of myoblasts must be tightly regulated by various myogenic regulatory factors (MRFs) such as MyoD, myogenic factor 5 (Myf5), myogenin, and muscle-specific regulatory factor 4 (MRF4). However, it is not clear how the expression or activity of these MRFs is controlled during myogenesis. In this study, we identified ubiquitin-specific protease 4 (USP4), one of deubiquitinating enzymes, as a suppressor of MRFs by demonstrating that a knockdown of USP4 enhances myogenesis by controlling MyoD and the level of myogenesis marker proteins in C2C12 cells. However, it was revealed that the effect of USP4 on myogenesis is independent of its deubiquitinase activity because the catalytic-site mutant has the same inhibitory effects as the wild-type USP4 on myogenesis. We observed that the activity and protein levels of both HDAC1 and HDAC4 are decreased when myoblast differentiation is promoted by the USP4 knockdown. We also found that the role of USP4 in muscle differentiation is correlated with two major signaling pathways in myogenesis, AKT and the p38 mitogen-activated protein kinase pathways. According to these results, we propose that USP4 is a key player in myogenic differentiation; it controls myogenic regulatory factors in a catalytic-independent manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.