Abstract

Recent studies documenting a role for local protein synthesis in synaptic plasticity have lead to interest in the opposing process, protein degradation, as a potential regulator of synaptic function [1–7]. The ubiquitin-conjugation system identifies, modifies, and delivers proteins to the proteasome for degradation [8, 9]. We found that both the proteasome and ubiquitin are present in the soma and dendrites of hippocampal neurons. As the trafficking of glutamate receptors (GluRs) is thought to underlie some forms of synaptic plasticity [10, 11], we examined whether blocking proteasome activity affects the agonist-induced internalization of GluRs in cultured hippocampal neurons. Treatment with the glutamate agonist AMPA induced a robust internalization of GluRs. In contrast, brief pretreatment with proteasome inhibitors completely prevented the internalization of GluRs. To distinguish between a role for the proteasome and a possible diminution of the free ubiquitin pool, we expressed a chain elongation defective ubiquitin mutant (UbK48R), which causes premature termination of polyubiquitin chains but, importantly, can serve as a substrate for mono-ubiquitin-dependent processes. Expression of K48R in neurons severely diminished AMPA-induced internalization establishing a role for the proteasome. These data demonstrate the acute (e.g., minutes) regulation of synaptic function by the ubiquitin-proteasome pathway in mammalian neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.