Abstract

Ubiquinol (QH), a reduced form of coenzyme Q10, is a lipid antioxidant that is hydro-soluble and is commonly formulated in commercial supplements. Ubiquinol has been increasingly reported to exert antioxidant functions, in addition to its role in the cell energy-producing system of mitochondria and adenosine triphosphate (ATP) production. The aim of this study was to assess the potential beneficial effects of QH on anti-fatigue and ergogenic functions following physiological challenge. Forty 8-week-old male Institute of Cancer Research (ICR) mice were divided into four groups (n = 10 for each group): Group 1 (vehicle control or oil only); Group 2 (1X QH dose or 102.5 mg/kg); Group 3 (2X QH dose or 205 mg/kg); Group 4 (6X QH dose or 615 mg/kg). Anti-fatigue activity and exercise performance were studied using the forelimb grip strength experiment and exhaustive weight-loaded swimming time, and levels of serum lactate, ammonia, glucose, BUN (blood urea nitrogen), creatine kinase (CK), and free fatty acids (FFA) after an acute exercise challenge. The forelimb grip strength and exhaustive weight-loaded swimming time of the QH-6X group were significantly higher than those of the other groups. QH supplementation dose-dependently reduced serum lactate, ammonia, and CK levels and increased the FFA concentration after acute exercise. In addition, QH increased the liver and muscle glycogen content, an important energy source during exercise. Therefore, the results suggest that QH formulation is a safe dietary supplement for amelioration of fatigue and for promoting exercise performance.

Highlights

  • Physical fatigue is commonly defined as the reversible decline of performance during activity [1].The commonly known fatigue mechanisms are related to metabolic fuel availability and the accumulation of waste products

  • The muscle weights of the QH-1X, QH-2X, and QH-6X groups were significantly higher than those of the vehicle group, by 1.08- (p = 0.0089), 1.09- (p = 0.0044) and 1.07-fold (p < 0.0176), respectively

  • There is one report showing that decreased blood urea nitrogen (BUN) levels, which reflect reduced protein metabolism and increased hepatic glycogen storage, may provide an extra energy source for mice during CoQ10 supplementation that results in improved physical stamina [31]. This agrees with our results; we found that long-term QH supplementation increased hepatic glycogen storage (Figure 6) and free fatty acids (FFA) levels after exercise (Figure 5D) and could provide an energy source during exercise to improve exercise performance

Read more

Summary

Introduction

Physical fatigue is commonly defined as the reversible decline of performance during activity [1]. The commonly known fatigue mechanisms are related to metabolic fuel availability and the accumulation of waste products. Reactive oxygen species (ROS) are produced by practicing intense and long-term physical exercise, which may induce tissue damage and oxidative stress [2], and antioxidant supplementation attenuates exercise-induced oxidative stress and fatigue of the body [3]. It is reasonable to assume that if one can overcome the effects of fatigue, its impact upon physical performance can be reduced. Coenzyme Q10 (Ubiquinone, CoQ10), a lipid-soluble vitamin-like nutrient found naturally, is synthesized as an endogenously antioxidant in the body [4]. Due to its Nutrients 2019, 11, 2550; doi:10.3390/nu11112550 www.mdpi.com/journal/nutrients

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call