Abstract
Although the functional interaction between ubiquitin conjugating enzymes (E2s) and ubiquitin ligases (E3s) is essential in ubiquitin (Ub) signaling, the criteria that define an active E2–E3 pair are not well-established. The human E2 UbcH7 (Ube2L3) shows broad specificity for HECT-type E3s1, but often fails to function with RING E3s in vitro despite forming specific complexes2–4. Structural comparisons of inactive UbcH7/RING complexes with active UbcH5/RING complexes reveal no defining differences3,4, highlighting a gap in our understanding of Ub transfer. We show that, unlike many E2s that transfer Ub with RINGs, UbcH7 lacks intrinsic, E3-independent reactivity with lysine, explaining its preference for HECTs. Despite lacking lysine reactivity, UbcH7 exhibits activity with the RING-In Between-RING (RBR) family of E3s that includes Parkin and human homologue of ariadne (HHARI)5,6. Found in all eukaryotes7, RBRs regulate processes such as translation8 and immune signaling9. RBRs contain a canonical C3HC4-type RING, followed by two conserved Cys/His-rich Zn2+-binding domains, In-Between-RING (IBR) and RING2 domains, which together define this E3 family7. Here we show that RBRs function like RING/HECT hybrids: they bind E2s via a RING domain, but transfer Ub through an obligate thioester-linked Ub (denoted ‘~Ub’), requiring a conserved cysteine residue in RING2. Our results define the functional cadre of E3s for UbcH7, an E2 involved in cell proliferation10 and immune function11, and suggest a novel mechanism for an entire class of E3s.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have