Abstract
Robotic transport missions serve a variety of valuable purposes within similar contexts. These include delivering packages in urban or remote areas, dispatching supplies to disaster or conflict zones, and facilitating delivery operations. In such a context, this work deals with the cooperation and control of multiple-robot systems involving heterogeneous robot formation with sensing and actuation capabilities to perform load transportation tasks. Two off-the-shelf unmanned ground vehicles (UGVs) working cooperatively with one unmanned aerial vehicle (UAV) are used to validate the proposal. The interactions between the UAV and the UGVs are not only information exchanges but also physical couplings required to cooperate in the load’s joint transportation. The existence of an obstacle between the two UGVs makes it impossible for them to meet each other. Thus, the lifting, transport, and delivery of the load from one UGV to the other are performed by a UAV with a suspended electromagnet actuator. Experiments are performed for a weight of 165 g (load + electronic board), which corresponds to up to 36% of the UAV’s mass.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have