Abstract
Path planning is the essential aspect of autonomous flight system for unmanned aerial vehicles (UAVs). An improved particle swarm optimization (PSO) algorithm, named GBPSO, is proposed to enhance the performance of three-dimensional path planning for fixed-wing UAVs in this paper. In order to improve the convergence speed and the search ability of the particles, the competition strategy is introduced into the standard PSO to optimize the global best solution during the process of particle evolution. More specifically, according to a set of segment evaluation functions, the optimal path found by single waypoint selection way is adopted as one of the candidate global best paths. Meanwhile, based on the particle as an integrated individual, an optimal trajectory from the start point to the flight target is generated as another global best candidate path. Subsequently, the global best path is determined by considering the pre-specified elevation function values of two candidate paths. Finally, to verify the performance of the proposed method, GBPSO is compared with some existing path-planning methods in two simulation scenarios with different obstacles. The results demonstrate that GBPSO is more effective, robust and feasible for UAV path planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.