Abstract
In the context of real world application, Search and Rescue Missions on the ocean surface remain a complex task due to the large-scale area and the forces of the ocean currents, spreading lost targets and debris in an unpredictable way. In this work, we present a Path Planning Approach to search for a lost target on ocean surface using a swarm of UAVs. The combination of GlobCurrent dataset and a Lagrangian simulator is used to determine where the particles are moved by the ocean currents forces while Deep Q-learning algorithm is applied to learn from their dynamics. The evaluation results of the trained models show that our search strategy is effective and efficient. Over a total search area (red Sea zone), surface of 453422 Km2, we have shown that our strategy Search Success Rate is 98.61%, the maximum Search Time to detection is 15 days and the average Search Time to detection is almost 15 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.