Abstract
With the rapid development of information technology, various products used in information technology are also constantly optimized. Among them, the task and path planning of UAV in the high-end robot industry has always been the focus of relevant researchers. In the high-end robot industry, in addition to the research and development of UAVs, they also continue to learn and strengthen the task and path planning of UAVs. Nowadays, using unmanned aerial vehicles for real-time shooting has become the trend of this era. Drones have brought great convenience to people’s lives, and more and more people are willing to use drones. Based on the above situation, this paper studies the task and path planning of UAV based on reinforcement learning in dynamic environment. In the case of unpredictable scene parameters, reinforcement learning method can be established by value function. Thus, a more reasonable path can be given to realize the reconnaissance and detection of points of interest. MATLAB simulation experiments show that the algorithm can effectively detect targets in complex terrain composed of terrain restricted areas, and return to the designated end point to complete communication. Firstly, the development of unmanned aerial vehicles in various countries and the social status of unmanned aerial vehicles are discussed. By making UAV build threat model and task allocation in dynamic environment. The path planning and optimization of UAV in dynamic environment is studied, and the path planning algorithm and Hungarian algorithm are added. The optimized UAV has the fastest data transmission and calculation speed, while the other two types of UAVs have slower data transmission and calculation speed. In particular, ordinary UAVs also have data transmission failures, resulting in incomplete experimental results. The results show that the optimized UAV system is better in data calculation and transmission, which also shows that the UAV can quickly plan and process flight paths, which is suitable for practical applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.