Abstract
Abstract. This paper addresses an innovative evolutionary computation approach to 3D path planning of autonomous UAVs in real environment. To solve this Np-hard problem, Newtonian imperialist competitive algorithm (NICA) was developed and extended for path planning problem. This paper is related to optimal trajectory-designing before UAV missions. NICA planner provides 3D optimal paths for UAV planning in real topography of north Tehran environment. To simulate UAV path planning, a real DTM is used to algorithm. For real-world applications, final generated paths should be smooth and also physical flyable that made the path planning problems complex and more constrained. The planner progressively presents a smooth 3D path from first position to mission target location. The objective function contains distinctive measures of the problem. Our main goal is minimization of the total mission time. For evaluating of NICA efficiency, it is compared with other three well-known methods, i.e. ICA, GA, and PSO. Then path planning of UAV will done. Finally simulations proved the high capabilities of proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.