7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.5194/isprs-archives-xliii-b3-2022-855-2022
Copy DOIPublication Date: May 30, 2022 | |
Citations: 8 | License type: CC BY 4.0 |
Abstract. Plastic is the third world’s most produced material by industry (after concrete and steel), but people recycle only 9% of plastic that they have used. The other parts are either burned or accumulated in landfills and in the environment, the latter being the cause of many serious consequences, in particular when considering a long-term scenario. A significant part the plastic waste is dispersed in the aquatic environment, having a dramatic impact on the aquatic flora and fauna. This motivated several works aiming at the development of methodologies and automatic or semi-automatic tools for the plastic pollution detection, in order to enable and facilitate its recovery. This paper deals with the problem of plastic waste automatic detection in the fluvial and aquatic environment. The goal is that of exploiting the well-recognized potential of machine learning tools in object detection applications. A machine learning tool, based on random forest classifiers, has been developed to properly detect plastic objects in multi-spectral imagery collected by an unmanned aerial vehicle (UAV). In the developed approach, the outcome is determined by the combination of two random forest classifiers and of an area-based selection criterion. The approach is tested on 154 images collected by a multi-spectral proximity sensor, namely the MAIA-S2 camera, in a fluvial environment, on the Arno river (Italy), where an artificial controlled scenario was created by introducing plastic samples anchored to the ground. The obtained results are quite satisfactory in terms of object detection accuracy and recall (both higher than 98%), while presenting a remarkably lower performance in terms of precision and quality. The overall performance appears also to be dependent on the UAV flight altitude, being worse at higher altitudes, as expected.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.