Abstract

BackgroundRecently, many academic research groups focused their attention on changes in human brain networks related to several kinds of pathologies and diseases. Generally speaking, Network Medicine promises to identify the principles to understand, at the molecular level, the human life complex system. We applied the theoretical approach of the Network Medicine mainly to brain diseases, testing the potentiality of the method to produce an early and more in-depth diagnostic process. However, the range of our topics and application of the Network Medicine spans from common neurological and neuropsychological spectrum disorders to other physiological systems or district, only apparently out of the action range of the neurological one. In the areas of Neurology and Neuropsychology we are studying brain networks in Tourette Syndrome [TS] and Multiple Sclerosis [MS]. Moreover, we are studying brain networking related to genotype alteration responsible for different gustatory stimuli processing in the brain. Further, we recently started to study infective diseases and immunological system.Main body of the abstractThe analysis of brain networks is made feasible by the development and application of imaging acquisition methods based on the Magnetic Resonance Imaging and functional MRI, as well as the availability of innovative calculation tools from graph theory and complex dynamical systems. This paper highlights the Network Medicine concepts and the application of the functional connectivity for the brain networks description. We will describe all these methods with a reduced use of formulas, along with some technical tools available in the WEB to perform the calculations of the related parameters. We will briefly describe the freely available software CONN used for calculating different connectivity parameters. In all these studies, the networks characterisation is performed using indexes from metric and topology of the brain networks. The possibility of early recognition of the diseases by the identification of the alteration in the network’s parameters may significantly improve patient outcome, with also significant social community benefits. We intend to illustrate a possible pipeline for the Networks Brain application to neuroradiologists involved in the diagnosis of complex diseases.Short conclusionThe multidisciplinary approach is one of the essential characteristics of journals in the imaging sciences field; the issues and the methodologies examined in this paper could be of great interest to the reader’s community. Furthermore, until today very few studies focused on the network medicine and connectivity explored in functional MRI. Hence this might have an additional value for the journal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.