Abstract
Predicting the environmental behavior of U(VI) relies on identification of its local coordination structure on mineral surfaces, which is also an indication of the intrinsic reactivity of the facet. We investigated the adsorption of U(VI) on two facets ({001} and {012}) of hematite (α-Fe2O3) by coupling experimental, spectroscopic and theoretical studies. Batch experiments results indicate higher removal capacity of the hematite {012} facet for U(VI) with respect to the {001} facet, due to the existence of extra singly and triply coordinated oxygen atoms with higher reactivity on the {012} facet while only doubly coordinated oxygen atoms exist on the {001} facet. The formation of surface complexes containing U(VI) is responsible for the appearance of a new sextuplet by Mössbauer spectra. The local structures of an inner-sphere edge-sharing bidentate complex on the hematite {001} and a corner-sharing complex on the {012} facet was deciphered by extended X-ray absorption fine structure spectroscopy. The chemical plausibility of the proposed structures was further verified by density functional theory calculation. This finding reveals the important influence of surficial hydroxyl groups reactivity on ions adsorption, which is helpful to better understand the interfacial interactions and to improve the prediction accuracy of U(VI) fate in aquatic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.