Abstract

Although the three main phases of iron oxide – hematite, maghemite, and magnetite – exhibit superparamagnetic properties at the nanoscale, only maghemite and magnetite phases have been explored in magnetic bioactive glass-ceramics aimed at applications in cancer treatment by hyperthermia. In this work, it is reported for the first time the superparamagnetic properties of hematite nanocrystals grown in a 58S bioactive glass matrix derived from sol-gel synthesis. The glass-ceramics are based on the (100-x)(58SiO2-33CaO-9P2O5)-xFe2O3 system (x = 10, 20 and 30 wt%). A thermal treatment leads to the growth of hematite (α-Fe2O3) nanocrystals, conferring superparamagnetic properties to the glass-ceramics, which is enough to produce heat under an external alternating magnetic field. Besides, the crystallization does not inhibit materials bioactivity, evidenced by the formation of calcium phosphate onto the glass-ceramic surface upon soaking in simulated body fluid. Moreover, their cytotoxicity is similar to other magnetic bioactive glass-ceramics reported in the literature. Finally, these results suggest that hematite nanocrystals' superparamagnetic properties may be explored in multifunctional glass-ceramics applied in bone cancer treatment by hyperthermia allied to bone regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.