Abstract
We prove -consistency and asymptotic normality of a generalized semiparametric regression estimator that includes as special cases Ichimura's semiparametric least-squares estimator for single index models, and the estimator of Klein and Spady for the binary choice regression model. Two function expansions reveal a type of U-process structure in the criterion function; then new U-process maximal inequalities are applied to establish the requisite stochastic equicontinuity condition. This method of proof avoids much of the technical detail required by more traditional methods of analysis. The general framework suggests other -consistent and asymptotically normal estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.