Abstract
In this paper, we investigate robust parameter estimation and variable selection for binary regression models with grouped data. We investigate estimation procedures based on the minimum-distance approach. In particular, we employ minimum Hellinger and minimum symmetric chi-squared distances criteria and propose regularized minimum-distance estimators. These estimators appear to possess a certain degree of automatic robustness against model misspecification and/or for potential outliers. We show that the proposed non-penalized and penalized minimum-distance estimators are efficient under the model and simultaneously have excellent robustness properties. We study their asymptotic properties such as consistency, asymptotic normality and oracle properties. Using Monte Carlo studies, we examine the small-sample and robustness properties of the proposed estimators and compare them with traditional likelihood estimators. We also study two real-data applications to illustrate our methods. The numerical studies indicate the satisfactory finite-sample performance of our procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.