Abstract

Eurasia has largely grown to its present enormous size through episodic addition of crustal blocks by recurring birth and demise of oceans such as Paleotethys and Neotethys. Excluding the Kopet Dagh Mountains in the northeast, crystalline basement rocks of various dimensions are exposed in all continental tectonic zones of Iran. These rocks have traditionally been viewed as continental fragments with Gondwanan affinity and summarily been assigned Precambrian or younger ages, despite the fact that evidence from isotopic dating has largely been lacking. This study presents new ion microprobe and thermal-ionization zircon U-Pb geochronological data from granitoids and orthogneisses from several locations in central Iran and the Sanandaj–Sirjan structural zones to determine crystallization ages and investigate the origin and continental affinity of these various crustal fragments. The resulting U-Pb crystallization ages for the granites and orthogneisses range from late Neoproterozoic to Early Cambrian, matching the mostly juvenile Arabian–Nubian shield and Peri-Gondwanan terranes constructed after the main phase of Pan-African orogenesis. TIMS analyses of zircons with inherited cores from western Iran suggest that the Neoproterozoic crust of Iran might not be entirely juvenile, pointing to the potential presence of inherited older Proterozoic components as is common in the eastern Arabian shield. More importantly, the new zircon U-Pb crystallization ages unequivocally demonstrate that crystalline basement underlying the Sanandaj–Sirjan zone, central Iran, and the Alborz Mountains is composed of continental fragments with Gondwanan affiliation, characterized by wide spread late Neoproterozoic subduction-related magmatism. The exposure of these late Neoproterozoic–Early Cambrian basement rocks in the Iranian regions north of the Zagros is structurally controlled and linked to both large-scale crustal extension and exhumation during Mesozoic and Tertiary time as well as Tertiary collisional tectonics associated with the closure of Neotethys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call