Abstract

Nearby faults interact with each other through the exchange of stress. However, the extent of fault interaction is poorly understood. In particular, interactions may lead to slow-slip activity, resulting in episodes of transient surface motion. Our study concentrates on Northwest Sulawesi (Indonesia), which hosts two fault zones with potential for major earthquakes and tsunamis: the strike-slip Palu-Koro fault and the Minahassa subduction zone. Thanks to a 20-year-long effort in geodetic monitoring, we are able to identify multiple periods during which surface velocities deviate from their interseismic trend. We use a Bayesian methodology with forward predictions of slip on the two fault interfaces to match the observations following the 2018 Mw7.5 Palu earthquake, and infer that both deep afterslip on the Palu-Koro fault and slow slip on the Minahassa subduction interface have caused the observed transient surface motion. This finding represents the first recording of a slow slip event on the Minahassa subduction interface. We also infer that the subduction interface and the strike-slip fault are likely interacting on a regular basis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.