Abstract

Given the dependence of radiomic-based computer-aided diagnosis artificial intelligence on accurate lesion segmentation, we assessed the performances of 2D and 3D U-Nets in breast lesion segmentation on dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) relative to fuzzy c-means (FCM) and radiologist segmentations. Using 994 unique breast lesions imaged with DCE-MRI, three segmentation algorithms (FCM clustering, 2D and 3D U-Net convolutional neural networks) were investigated. Center slice segmentations produced by FCM, 2D U-Net, and 3D U-Net were evaluated using radiologist segmentations as truth, and volumetric segmentations produced by 2D U-Net slices and 3D U-Net were compared using FCM as a surrogate reference standard. Fivefold cross-validation by lesion was conducted on the U-Nets; Dice similarity coefficient (DSC) and Hausdorff distance (HD) served as performance metrics. Segmentation performances were compared across different input image and lesion types. 2D U-Net outperformed 3D U-Net for center slice (DSC, HD ) and volume segmentations (DSC, HD ). 2D U-Net outperformed FCM in center slice segmentation (DSC ). The use of second postcontrast subtraction images showed greater performance than first postcontrast subtraction images using the 2D and 3D U-Net (DSC ). Additionally, mass segmentation outperformed nonmass segmentation from first and second postcontrast subtraction images using 2D and 3D U-Nets (DSC, HD ). Results suggest that 2D U-Net is promising in segmenting mass and nonmass enhancing breast lesions from first and second postcontrast subtraction MRIs and thus could be an effective alternative to FCM or 3D U-Net.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.