Abstract
PurposeWe aimed to evaluate deep learning approach with convolutional neural networks (CNNs) to discriminate between benign and malignant lesions on maximum intensity projections of dynamic contrast-enhanced breast magnetic resonance imaging (MRI). MethodsWe retrospectively gathered maximum intensity projections of dynamic contrast-enhanced breast MRI of 106 benign (including 22 normal) and 180 malignant cases for training and validation data. CNN models were constructed to calculate the probability of malignancy using CNN architectures (DenseNet121, DenseNet169, InceptionResNetV2, InceptionV3, NasNetMobile, and Xception) with 500 epochs and analyzed that of 25 benign (including 12 normal) and 47 malignant cases for test data. Two human readers also interpreted these test data and scored the probability of malignancy for each case using Breast Imaging Reporting and Data System. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) were calculated. ResultsThe CNN models showed a mean AUC of 0.830 (range, 0.750–0.895). The best model was InceptionResNetV2. This model, Reader 1, and Reader 2 had sensitivities of 74.5%, 72.3%, and 78.7%; specificities of 96.0%, 88.0%, and 80.0%; and AUCs of 0.895, 0.823, and 0.849, respectively. No significant difference arose between the CNN models and human readers (p > 0.125). ConclusionOur CNN models showed comparable diagnostic performance in differentiating between benign and malignant lesions to human readers on maximum intensity projection of dynamic contrast-enhanced breast MRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.