Abstract

Tyrosine-specific chemical modification was achieved using in situ hemin-activated luminol derivatives. Tyrosine residues in peptide and protein were modified effectively with N-methylated luminol derivatives under oxidative conditions in the presence of hemin and H2O2. Both single and double modifications of the tyrosine residue occurred in the reaction of angiotensin II with N-methylated luminol derivative 9. Tyrosine-specific chemical modification of the model protein bovine serum albumin (BSA) revealed that the surface-exposed tyrosine residues were selectively modified with 9. We succeeded in the functionalization of several proteins using azide-conjugated compound 18 using alkyne-conjugated probes by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) or dibenzocyclooctyne (DBCO)-mediated copper-free click chemistry. This tyrosine-specific modification was orthogonal to conventional lysine modification by N-hydroxysuccinimide (NHS) ester, and dual functionalization by fluorescence modification of tyrosine residues and PEG modification of lysine residues was achieved without affecting the modification efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.