Abstract

Many complex terpenoids, predominantly isolated from plants and fungi, show drug-like physicochemical properties. Recent advances in genome mining revealed actinobacteria as an almost untouched treasure trove of terpene biosynthetic gene clusters (BGCs). In this study, we characterized a terpene BGC with an unusual architecture. The selected BGC includes, among others, genes encoding a terpene cyclase fused to a truncated reductase domain and a cytochrome P450 monooxygenase (P450) that is split over three gene fragments. Functional characterization of the BGC in a heterologous host led to the identification of several new members of the trans-eunicellane family of diterpenoids, the euthailols, that feature unique oxidation patterns. A combination of bioinformatic analyses, structural modeling studies, and heterologous expression revealed a dual function of the pathway-encoded hypothetical protein that acts as an isomerase and an oxygenase. Moreover, in the absence of other tailoring enzymes, a P450 hydroxylates the eunicellane scaffold at a position that is not modified in other eunicellanes. Surprisingly, both the modifications installed by the hypothetical protein and one of the P450s exhibit partial redundancy. Bioactivity assays revealed that some of the euthailols show growth inhibitory properties against Gram-negative ESKAPE pathogens. The characterization of the euthailol BGC in this study provides unprecedented insights into the partial functional redundancy of tailoring enzymes in complex diterpenoid biosynthesis and highlights hypothetical proteins as an important and largely overlooked family of tailoring enzymes involved in the maturation of complex terpenoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.